

Sponsorship and Support

This presentation is sponsored by

and supported by an educational grant from Boehringer Ingelheim Pharmaceuticals, Inc.

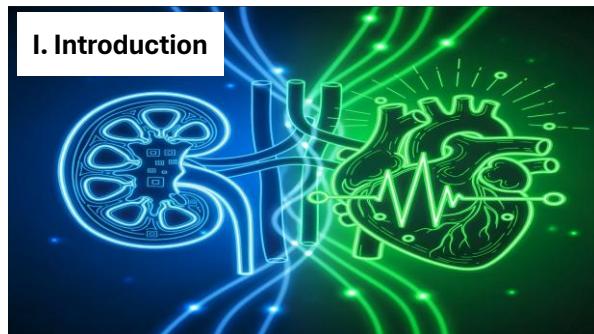
In collaboration with

Primary Care Metabolic Group

Join at <https://www.pcmg-us.org> for free CME, discounts on conferences and resources for clinicians interested in metabolic disorders.

FREE to JOIN!

Learning Objectives


Participants in this presentation should be able to...

Describe the role of aldosterone in HF and CKD, including its impact on cardiovascular and renal diseases, and clinical trials evaluating agents targeting aldosterone in these diseases.

Implement correct strategies for identification and diagnosis of HF and CKD.

Apply guideline recommendations and current evidence when designing guideline-directed medical therapy regimens for HF and CKD to reduce disease progression and improve patient outcomes.

Integrate multidisciplinary care into diagnosis and treatment of HF and CKD to promote coordinated management across care settings.

Definitions of HF and CKD

• **CKD defined (KDIGO):**¹ “abnormalities of kidney structure or function, present for a minimum of at least 3 months, with implications for health”
• Classified based on GFR and urine albumin-to-creatinine ratio (UACR)

• **HF defined (AHA/ACC/HFSA):**² “a complex clinical syndrome with symptoms and signs that result from any structural or functional impairment of ventricular filling or ejection of blood.”
• Classified by symptoms/stage and LVEF

ACC, American College of Cardiology; AHA, American Heart Association; CKD, chronic kidney disease; GFR, glomerular filtration rate; HF, heart failure; HFSA, Heart Failure Society of America; LVEF, left ventricular ejection fraction

1. KDIGO CKD Work Group. *Kidney Int*. 2024;105(4):811-8314. 2. Alderman et al. *Circulation*. 2022;145(18):3895-3902.

Definition and Staging of CKD		Albuminuria categories		
CKD is classified based on:		Description and range		
• GFR (G) • Albuminuria (A)		A1	A2	A3
		Normal or mildly increased <30 mg/g <3 mg/mmol	Moderately increased 30–299 mg/g 3–29 mg/mmol	Severely increased ≥300 mg/g ≥30 mg/mmol
GFR categories (ml/min/1.73 m ²)		G1 Normal or high ≥90	Screen 1 Treat 1 Refer 3	Treat and refer 3
	G2 Mildly decreased 60–89	Screen 1 Treat 1 Refer 3	Treat 2 Refer 3	Treat and refer 3
	G3a Moderately to moderately decreased 45–59	Treat 1 Refer 3	Treat 2 Refer 3	Treat and refer 3
	G3b Moderately to severely decreased 30–44	Treat 2 Refer 3	Treat and refer 3	Treat and refer 3
	G4 Severely decreased 15–29	Treat and refer* 3	Treat and refer* 3	Treat and refer 4+
	G5 Kidney failure <15	Treat and refer 4+	Treat and refer 4+	Treat and refer 4+

de Boer IH, et al. Diabetes Care. 2022;45:3075–3090. Reprinted with permission from the American Diabetes Association, Inc. Copyright 2022.

Legend: Low risk (if no other markers of kidney disease, no CKD) ■ High risk ■ Moderately increased risk ■ Very high risk ■

CV Risk by KDIGO Stages				
Observational study assessing CV and renal risk in 543,606 individuals using an electronic database in Japan				
KDIGO	A1	A2	A3	Without urine protein test
(a) MACE1 (primary outcome)				
G2	1.37 (1.32–1.42)	1.59 (1.52–1.67)	1.46 (1.42–1.50)	
G3a	1.56 (1.51–2.20)	1.57 (1.29–1.46)	2.13 (1.66–2.30)	1.82 (1.74–1.90)
G3b	1.43 (1.34–1.51)	1.68 (1.53–1.86)	2.02 (1.86–2.17)	2.64 (2.46–2.83)
G4	1.86 (1.65–2.09)	2.25 (1.36–2.59)	2.44 (2.26–2.66)	3.18 (2.90–3.47)
G5	2.08 (1.46–2.96)	2.37 (1.69–3.33)	2.83 (2.54–3.15)	
(b) MACE2 (ad hoc primary outcome)				
G2	1.00 (reference)	1.35 (1.28–1.43)	1.97 (1.89–2.09)	1.50 (1.45–1.55)
G3a	1.52 (1.11–1.23)	1.47 (1.35–1.59)	2.13 (1.97–2.30)	1.82 (1.52–1.66)
G3b	1.59 (1.39–1.79)	1.62 (1.52–1.72)	2.22 (1.99–2.44)	2.18 (1.86–2.31)
G4	2.35 (2.04–2.79)	2.62 (2.21–3.11)	3.12 (2.81–3.46)	3.60 (3.31–3.90)
G5	3.49 (2.31–5.25)	3.63 (2.42–5.44)	3.43 (3.00–3.93)	4.68 (4.20–5.21)

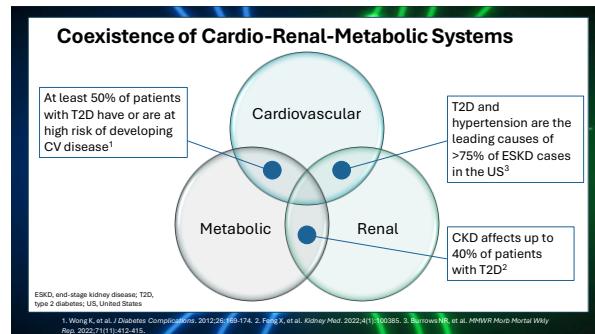
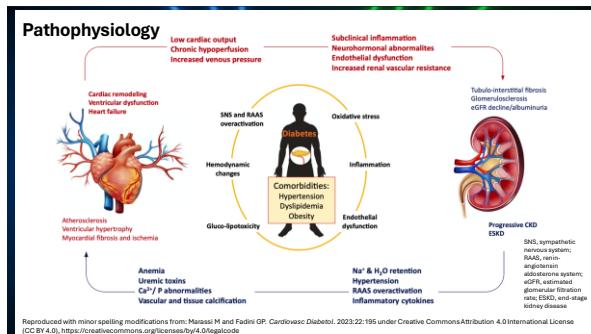
Data are HR (95% CI).

MACE1: composite of myocardial infarction, stroke, heart failure hospitalization, and in-hospital death

MACE2: myocardial infarction hospitalization, stroke hospitalization, heart failure hospitalization, and in-hospital death

KDIGO, Kidney Disease Global Outcomes; MACE, major adverse cardiovascular events

Reproduced with modification from Maruyama, et al. Clin Kidney J. 2024;17(8):stac226, under Creative Commons Attribution 4.0 International License (CC BY 4.0). <https://creativecommons.org/licenses/by/4.0/legalcode>



HF Staging and Classification by LVEF ¹	
Stage	Description
Stage A	At-risk for HF
Stage B	Pre-HF
Stage C	Symptomatic HF
Stage D	Advanced HF
Type of HF	Criteria
HF _{REF} (HF with reduced EF)	LVEF ≤ 40%
HF _{ImpEF} (HF with improved EF)	Previous LVEF ≤ 40% and a follow-up measurement of LVEF > 40%
HF _{MrEF} (HF with mildly reduced EF)	LVEF 41%–49% Evidence of spontaneous or provable increased LV filling pressures
HF _{pEF} (HF with preserved EF)	LVEF ≥ 50% Evidence of spontaneous or provable increased LV filling pressures

EF, ejection fraction

1. Heidenreich, et al. Circulation. 2020;145(16):e959–e962.

The Interconnected Relationship Between HF and CKD	
Shared Risk Factors ¹	Shared Pathophysiologic Mechanisms ¹
<ul style="list-style-type: none"> • HF and CKD are independent, yet related, chronic diseases¹ • Bidirectional relationship: patients with HF can experience CKD and vice versa¹ • Shared risk factors and pathophysiology¹ 	<ul style="list-style-type: none"> • Diabetes • Hypertension • Inflammation • Reduced physical activity • Obesity • Smoking

1. Lata K, et al. Diabetes Obes Metab. 2022;27(7):2556–2562.

The Role of the Health Care Team in HF and CKD¹⁻⁴

- Health care team management of cardio-renal-metabolic diseases is recommended
- CKD is underdiagnosed, and many clinicians are not routinely screening patients with diabetes or hypertension for elevated UACR
 - Early screening and diagnosis leads to optimized kidney and CV care
- HF remains unrecognized in certain populations, such as those with obesity and dyspnea
- Primary care clinicians (PCCs) are often the first source for care
 - More than 60% of patients with CKD seen in primary care, and HF is commonly co-managed in primary care
 - PCCs can coordinate care to ensure coordinated, multidisciplinary management of HF and CKD

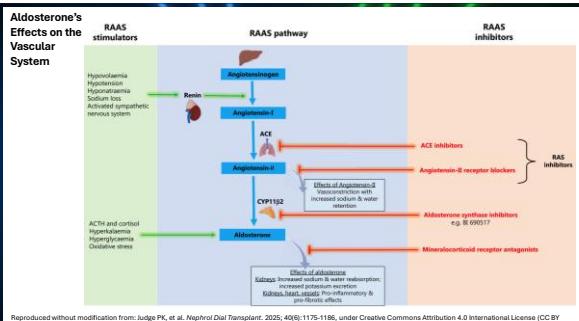
1. Rangaswami J, et al. Circulation. 2020;142(17):e00426. 2. Kushner PR, et al. Clin Diabetes. 2022;40(4):401-412. 3. Altago D, et al. Diabetes Care. 2021;44:2028-2032. 4. Shin J, et al. Hypertension. 2021;78:1042-1050. 5. Kosyakovskiy LB, et al. Circ Heart Fail. 2024;7(5):e01196.

Role of the PCC^{1,2}

- Facilitate early screening, diagnosis, and intervention
- Implement interventions early when indicated to prevent CV and renal morbidity/mortality and slow HF/CKD progression
 - Lifestyle interventions
 - Optimized risk factor management
 - Guideline-directed medical therapy (GDMT)
 - Initiation of agents with evidence of cardiovascular and kidney benefit
- Refer to specialists as appropriate
- Coordinate multidisciplinary care

1. Shulbrook JH, et al. Progred Med. 2017;116(4):379-387. 2. Kushner PR, et al. Clin Diabetes. 2022;40(4):401-412.

II. The Role of Aldosterone in HF and CKD and Emerging Agents Targeting Aldosterone



Aldosterone's Effects on the Vascular System¹

- Effects of aldosterone on the vascular system contribute to the development of various CV and metabolic diseases, including HF and CKD
- Alterations in physiology due to aldosterone results in worse clinical outcomes

Physiologic Consequences of Excess Aldosterone
Inflammation
Oxidative stress
Endothelial dysfunction
Fibrosis
Hypertrophic remodeling

1. Ottavio H, et al. Int J Mol Sci. 2023;24(6):5370.

Reproduced without modification from: Judge PK, et al. Nephrol Dial Transplant. 2025;40(6):1175-1186, under Creative Commons Attribution 4.0 International License (CC BY 4.0), <https://creativecommons.org/licenses/by/4.0/legalcode>

Agents Targeting Aldosterone to Treat HF and CKD

MRA^{1,2}

Oxidative stress occurs due to the binding of aldosterone to the mineralocorticoid receptor, providing mechanistic rationale for MRAs in HF and CKD

Steroidal MRAs:

- Spironolactone

Nonsteroidal MRAs:

- Finerenone (indications for CKD associated with T2D and for HF)

1. Ottavio H, et al. Int J Mol Sci. 2023;24(6):5370. 2. Attaluri M, et al. JACC Adv. 2025;4(9 Pt 1):10170.

Finerenone: Phase 3 Trials in T2D and CKD

	FIDELIO-DKD ¹	FIGARO-DKD ²
Design	Randomized, double-blind, placebo-controlled, multicenter, phase 3, event-driven	
Subjects	Adults (N = 5734) with: - T2D - Treated with ACE-I or ARB - UACR 30-300 eGFR 25-60 and diabetic retinopathy \geq UACR \geq 300 and eGFR \geq 60	Adults (N = 7437) with: - T2D - Treated with ACE-I or ARB - UACR 30-300 eGFR 25-60 and diabetic retinopathy \geq UACR \geq 300 and eGFR \geq 60
Randomized treatment	Finerenone 10 or 20 mg/d or placebo Titration based on potassium level and change in eGFR	
Primary endpoint	Composite of time to first occurrence of kidney failure, sustained decrease of eGFR \geq 40% over \geq 4 wks, or kidney-related death	Composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or HF hospitalization
Median follow up	2.6 years	3.4 years
Results published	October 2020	August 2021
UACR in mg/g and eGFR in mL/min/1.73 m ²		

¹ Bakris GL, et al. *N Engl J Med*. 2020;383(23):2219-2229. ² Pitt B, et al. *N Engl J Med*. 2021;385(14):2252-2262.

Finerenone: FINEARTS-HF Phase 3 Trial

• International, double-blind, placebo-controlled trial			
• Patients with HF and LVEF \geq 40% assigned 1:1 to finerenone or placebo once daily, in addition to usual therapy			
• Median follow up of 32 months			
Outcome	Finerenone Events (N or %)	Placebo Events (N or %)	Ratio (95% CI), P value
Composite of total worsening HF events and death from CV causes	1083 (624 of 3003 patients)	1283 (719 of 2998 patients)	Rate Ratio: 0.84 (0.74-0.95), P=.007
Worsening HF events	824	1024	Rate Ratio: 0.82 (0.71-0.94), P=.006
Death from CV causes	8.1%	8.7%	HR: 0.93 (0.78-1.11)

Finerenone was associated with an increased risk of hyperkalemia and a reduced risk of hypokalemia

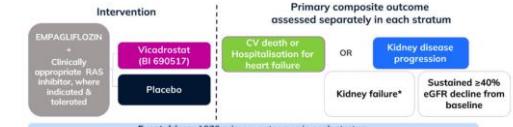
¹ Solomon ED, et al. *N Engl J Med*. 2022;387(11):1475-1485.

Agents Targeting Aldosterone to Treat HF and CKD

Aldosterone Synthase Inhibitor (ASI) Therapies¹

Suppress synthesis of aldosterone; can limit aldosterone-related adverse events by blocking synthesis rather than blocking the mineralocorticoid receptor

Vicadrostat


- EASI-HF (phase 3)
- EASI-KIDNEY (phase 3)

Other investigational ASI therapies such as lorundrostat and baxdrostat are primarily being studied in resistant hypertension

¹ Kobayashi M, et al. *Eur Heart J*. 2020;41(27):2618-2622.

Vicadrostat: EASI-KIDNEY Study Design

Population: Patients with CKD at risk of progression, with T2DM (stratum 1 ~4800) and without T2DM (stratum 2 ~6200)

Event driven: 1070 primary outcomes in each stratum (both strata will have 95% power at 2-sided alpha of 0.05 to detect on 18% relative risk reduction)

* Kidney failure is defined as the initiation of maintenance dialysis (continuing for at least 30 days, receipt of a kidney transplant, a sustained eGFR <10 mL/min/1.73 m², or death from kidney failure).

Reproduced without modification from Judge PE, et al. *Nephrol Dial Transplant*. 2025; 40(6):1175-1188, under Creative Commons Attribution 4.0 International License (CC BY 4.0), <https://creativecommons.org/licenses/by/4.0/legalcode>

Vicadrostat: EASI-HF Trials

EASI-HF Preserved (NCT06424288)

- Patients with HFrEF
 - LVEF \geq 40%, symptomatic heart failure
- Evaluating vicadrostat in combination with empagliflozin, in addition to standard of care

EASI-HF Reduced (NCT06935370)

- Patients with HFrEF
 - LVEF < 40%, symptomatic chronic heart failure
- Evaluating vicadrostat in combination with empagliflozin, in addition to standard of care

III. Early Identification and Diagnosis of HF and CKD

Importance of Early Identification and Diagnosis

- Early recognition and diagnosis of HF and CKD can help:^{1,2}
 - Reduce diagnostic delays
 - Implement earlier treatment to modify the disease course
 - Improve quality of life
 - Mitigate CV and renal adverse outcomes
 - Reduce morbidity and mortality

1. KDIGO CKD Work Group. Kidney Int. 2024;105(4):S117-S314. 2. Heidenreich et al. Circulation. 2020;146(18):e895-e1022.

Screening and Diagnosis: HF¹

- Standardized screening for HF remains challenging** due to the heterogeneity of risk factors across different patient populations
 - Based on symptoms, clinical history
- LVEF is key in classifying patients** with HF
 - Differing prognosis and response to treatments
 - Most clinical trials select patients based on EF

F. Heidenreich et al. Circulation. 2020;146(18):e895-e1022.

HF Diagnostic Algorithm¹

```

graph LR
    A[Assessment  
• Clinical history  
• Physical examination  
• ECG, labs] --> B[Natriuretic Peptide  
• NT-proBNP >125 pg/mL  
• BNP ≥35 pg/mL]
    B --> C[Transthoracic Echocardiography  
• Additional testing, if necessary]
    C --> D[HF Diagnosis Confirmed  
• Determine cause and classify]
    D --> E[HFrEF  
LVEF ≤40%]
    D --> F[HRmrEF  
LVEF 41%–49%]
    D --> G[HFrEF  
LVEF ≥50%]
    E --> H[Evaluate for precipitating factors  
Initiate treatment]
    F --> H
    G --> H
  
```

F. Heidenreich et al. Circulation. 2020;146(18):e895-e1022.

Screening and Diagnosis: CKD¹

- Despite the increasing recognition of the true burden of CKD, there remains controversy and lack of consensus as to the utility of population screening for CKD
- Patients with risk factors should be screened for CKD

Risk Factors for CKD
Hypertension
Diabetes
CV disease (including HF)
Prior acute kidney injury/acute kidney disease

F. Heidenreich et al. Circulation. 2020;146(18):e895-e1022.

CKD: Clinical Evaluation of Cause

Physical exam

Nephrotoxic medications

Symptoms and signs of urinary tract abnormalities

Medical history

Social and environmental history

Symptoms and signs of systemic diseases

Obtain careful family history for possible genetic causes, including family pedigree for CKD

Laboratory tests, imaging, and tissue sample, such as:

- Urinalysis and urine sediment
- Urine albumin-to-creatinine ratio
- Serologic tests
- Ultrasound
- Kidney biopsy
- Genetic testing

Reproduced without modification from: KDIGO CKD Work Group. Kidney Int. 2024;105(4):S117-S314, under the Creative Commons Attribution Non-Commercial-NC-Derivatives 4.0 International License (CC BY-NC-ND 4.0). Reproduced with permission by: CC-BY-NC-ND 4.0.

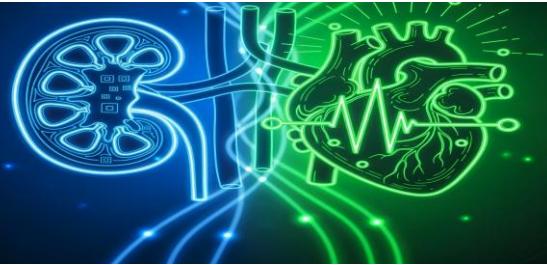
CKD Diagnosis: Laboratory Evaluation

What defines CKD diagnosis?

- Persistent urine ACR ≥30 mg/g and/or
- Persistent eGFR <60 mL/min/1.73 m² and/or
- Other evidence of kidney damage

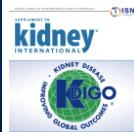
What to do with a positive result?

- Repeat and confirm:**
 - Evaluate possible temporary or spurious causes
 - Consider using cystatin C and creatinine to more precisely estimate GFR
 - Only persistent abnormalities define CKD
- Initiate evidence-based treatments**


de Boer IH, et al. Diabetes Care. 2022;45:3075-3090. Reprinted with permission of the American Diabetes Association, Inc. Copyright 2022.

Case Scenario #1

- A patient with newly diagnosed T2D and hypertension presents to the clinic with multiple risk factors for CV, renal, and metabolic diseases.


- When and how should the patient be tested for HF and CKD?

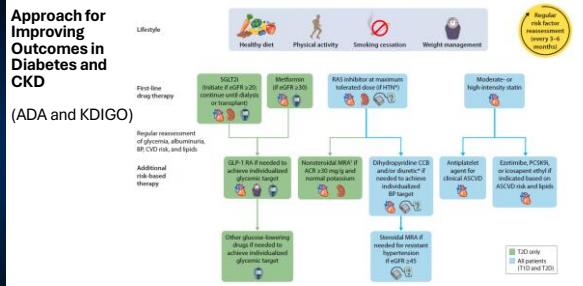
IV. Guideline-Directed Management of HF and CKD

Guideline Recommendations

Early screening, diagnosis, and comprehensive, coordinated care optimize outcomes in HF and CKD

2024 KDIGO Clinical Practice Guideline for the Evaluation and Management of CKD¹

2022 KDIGO Guidelines for Diabetes and CKD Management²

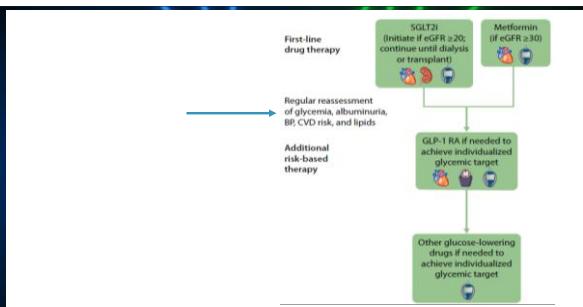


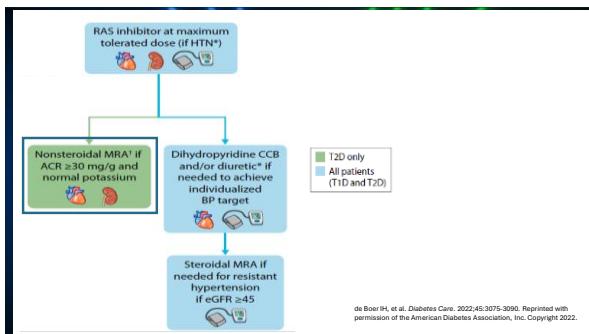
2022 AHA/ACC/HFSA Guideline for the Management of HF³

1. KDIGO CKD Work Group. Kidney Int. 2024;105(4S):S117-S314. 2. de Boer IH, et al. Diabetes Care. 2022;45:3075-3090. 3. Heidenreich et al. Circulation. 2022;146(18):e895-e1032.


Approach for Improving Outcomes in Diabetes and CKD

(ADA and KDIGO)

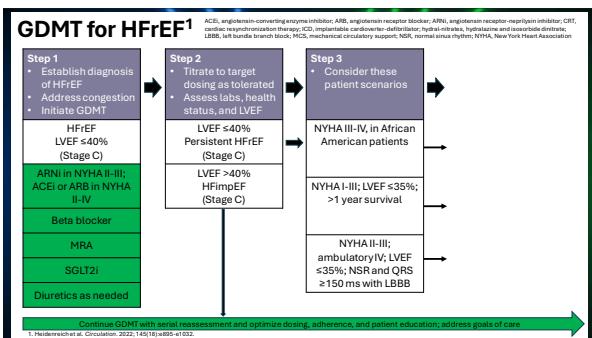
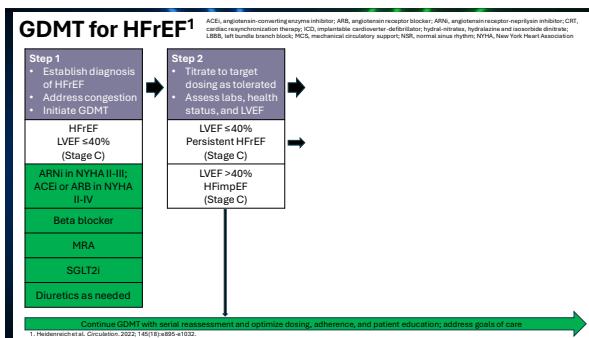
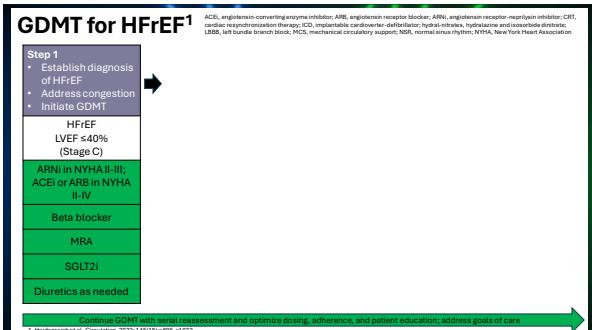


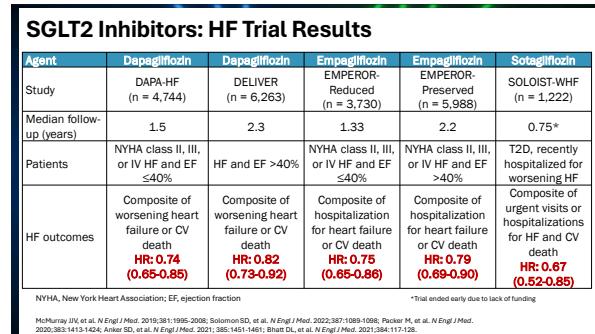
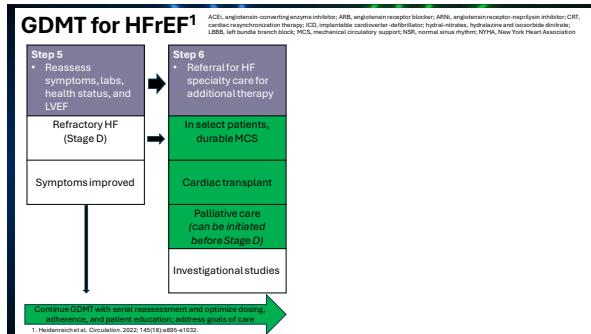
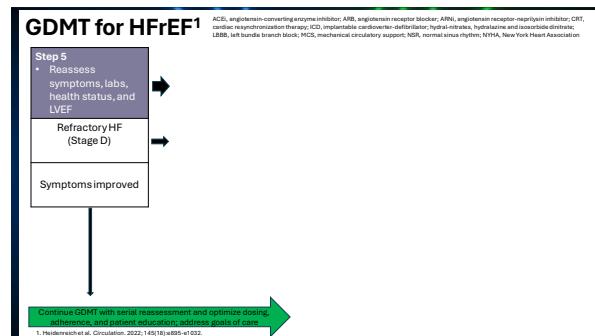
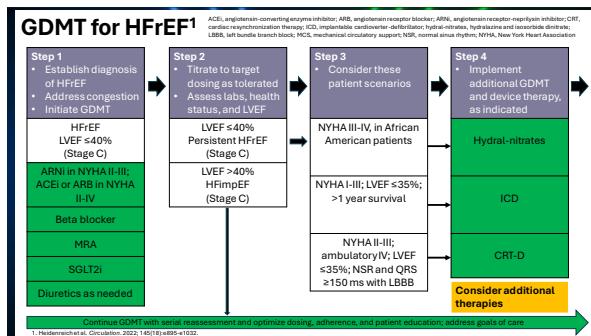

de Boer IH, et al. Diabetes Care. 2022;45:3075-3090. Reprinted with permission of the American Diabetes Association, Inc. Copyright 2022.

Approach for Improving Outcomes in Diabetes and CKD

de Boer IH, et al. Diabetes Care. 2022;45:3075-3090. Reprinted with permission of the American Diabetes Association, Inc. Copyright 2022.

SGLT2 Inhibitors: Kidney Outcome Trial Results			
Agent	Canagliflozin	Dapagliflozin	Empagliflozin
Study	CREDENCE (n = 4,401)	DAPA-CKD (n = 4,304, 2,906 w/diabetes)	EMPA-KIDNEY (n = 6,609, 3,040 w/diabetes)
Median follow-up (years)	2.6	2.4	2.0
Key kidney-related enrollment criteria	eGFR 30 to < 90 UACR: > 300 to 5000 mg/g	eGFR 25 to 75 UACR: 200 to 5000 mg/g	eGFR 20 to 45 (any UACR) eGFR 45 to 90 (UACR > 200 mg/g)
Mean baseline eGFR	56 mL/min/1.73m ²	43 mL/min/1.73m ²	37 mL/min/1.73m ²
Median Baseline UACR	927 mg/mg	949 mg/mg	329 mg/mg
Kidney outcome(s)	Primary Outcome • ESKD (dialysis, transplantation, or sustained eGFR < 15 mL/min/1.73m ²), doubling of SCR, or death from renal causes	Primary Outcome • ≥ 50% decrease in eGFR, ESKD, or death from renal or cardiovascular causes	Primary Outcome • ≥ 40% decrease in eGFR, decrease in eGFR to <10 mL/min/1.73m ² , ESKD, or death from renal causes
	HR: 0.70 (0.59-0.82)	HR: 0.61 (0.51-0.72)	HR: 0.72 (0.64-0.82)




SGLT2 Inhibitors and AKI Hospitalization





- SGLT-2 inhibitors often withheld during AKI among patients hospitalized with acute HF
 - Retrospective study of 3305 patients
 - 356 patients received SGLT-2 inhibitor following AKI diagnosis
 - **Rate of renal recovery not significantly different** between those exposed and unexposed to SGLT-2 inhibitors following AKI (HR 0.94, 95% CI 0.79-1.11, $P=0.46$)
 - SGLT-2 inhibitor exposure associated with **lower risk of 30-day mortality** (HR 0.45, 95% CI 0.23-0.87, $P=0.02$)

Conclusion: in adults with hospitalized with AKI and acute HF, exposure to SGLT-2 inhibitors leads to decreased mortality and no delay in recovery of kidney function

2020 RELEASE UNDER E.O. 14176

ANSWER

SGLT2 Inhibitors: Expanded Indications

Medication	Expanded Indications
Canagliflozin	...to reduce the risk of MACE* in adults with T2D and established CVD ...to reduce the risk of ESKD, doubling of serum creatinine, CV death, and hospitalization for HF in adults with T2D and diabetic nephropathy with albuminuria
Dapagliflozin	...to reduce the risk of hospitalization for HF in adults with T2D and established CVD or multiple CV risk factors ...to reduce the risk of CV death and hospitalization for HF, and urgent HF visit in adults with heart failure ...to reduce the risk of sustained eGFR decline, ESKD, CV death, and hospitalization for HF in adults with CKD at risk of progression
Empagliflozin	...to reduce the risk of CV death and hospitalization for HF in adults with HF ...to reduce the risk of CV death in adults with T2D and established CVD
Sotagliflozin	...to reduce the risk of CV death, hospitalization for HF, and urgent HF visit in adults with HF or T2D with CKD and other CV risk factors

*Composite of CV death, nonfatal MI, nonfatal stroke

Invokana [Package Insert]. Updated December 2024. Accessed March 17, 2025. Farxiga [Package Insert]. Updated October 2024. Accessed March 17, 2025. Jardiance [Package Insert]. Updated September 2023. Accessed March 17, 2025. Inpipla [Package Insert]. Updated January 2024. Accessed March 17th, 2025.

FLOW Trial: T2D/CKD Outcomes with Semaglutide

• Patients: 3533 adults with T2D and CKD randomized 1:1 to semaglutide 1.0 mg once weekly or placebo

• Trial stopped early at median follow-up of 3.4 years

• Results (all statistically significant in favor of semaglutide):

Outcome	Semaglutide vs Placebo
Primary outcome: major kidney disease events, a composite of the onset of major kidney failure, at least a 50% reduction in the eGFR from baseline, or death from kidney or cardiovascular causes	HR 0.76; 95% CI, 0.66 to 0.86; P = .0003
Kidney-specific components of the primary outcome	HR 0.79; 95% CI, 0.66 to 0.94
Death from cardiovascular causes	HR 0.71; 95% CI, 0.56 to 0.89
Risk of major adverse cardiovascular events	HR 0.82; 95% CI, 0.68 to 0.98; P = .029
Risk of death from any cause	HR 0.80; 95% CI, 0.67 to 0.95; P = .001

Conclusion: semaglutide reduced the risk of clinically important kidney outcomes and death from CV causes in patients with T2D and CKD

Persepolis V, et al. *N Engl J Med.* 2024;381:24 online ahead of print. doi:10.1056/NEJMoa2403347

GLP-1 RAs and Kidney Benefits in Patients Without T2D

SELECT trial analysis

- Long-term kidney outcomes in patients with obesity/overweight and cardiovascular disease who did not have diabetes
- Kidney composite endpoint:
 - Death from kidney disease, initiation of chronic kidney replacement therapy, onset of persistent eGFR < 15 mL/min/1.73 m², persistent ≥50% reduction in eGFR or onset of persistent macroalbuminuria
- Semaglutide 2.4 mg compared to placebo
 - 22% reduction in the kidney composite endpoint
 - 1.8% with semaglutide, 2.2% with placebo, $P = 0.02$

Colhoun HM, et al. *Nat Med*. May 25, 2023; online ahead of print. doi:10.1038/s41591-024-03015-5

Combined SGLT-2 Inhibitor and MRA Benefit

Joint analysis of randomized trials (CREDENCE, FIDELIO-DKD, and DAPA-CKD)

Outcome	Combination Treatment Events/Patients	Conventional Treatment Events/Patients	Hazard Ratio (95% CI)
Doubling of SCR, ESKD, or death due to kidney failure	405/5035	550/5040	0.50 (0.44–0.57)
ESKD	324/5035	400/5040	0.59 (0.51–0.69)
All-cause mortality	387/5035	445/5040	0.75 (0.65–0.86)

- Patients had T2D and CKD
- Conventional Treatment: ACE inhibitor or ARB
- Combination treatment: SGLT-2 inhibitor and nonsteroidal MRA

Estimated event-free survival from composite kidney outcome incremental gain was 6.7 years with combination treatment

Heerspink Hill, et al. *Diabetes Obes Metab*. 2023; doi:10.1111/dob.13232

Combined SGLT2 Inhibitor and MRA Benefit

The CONFIDENCE trial

- Patients had T2D and CKD (eGFR 30 to 90 mL/min/1.73 m² and UACR of 100 to ≤5000 mg/g)
 - Protocol required that patients were taking an ACE inhibitor or ARB
- Randomized 1:1:1 to finerenone + placebo, placebo + empagliflozin, or finerenone + empagliflozin
- Stratified by eGFR and UACR

Safety Outcome	Empagliflozin and Finerenone	Empagliflozin Alone	Finerenone Alone
Hyperkalemia	9.3%	11.4%	3.8%
>30% drop in eGFR at day 30	6.3%	3.8%	1.1%

Agarwal R, et al. *N Engl J Med*. 2023;383(8):533-543.

Combined SGLT2 Inhibitor and MRA Benefit

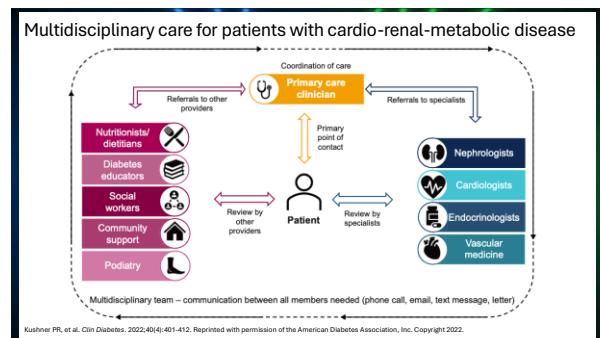
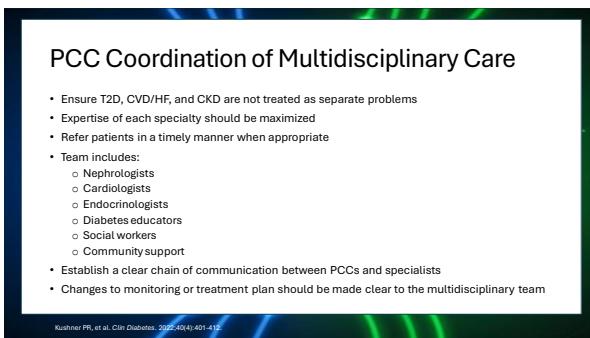
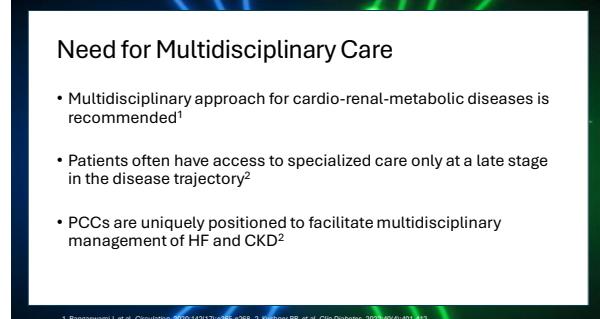
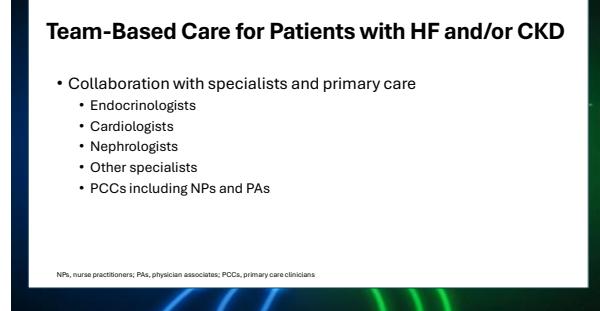
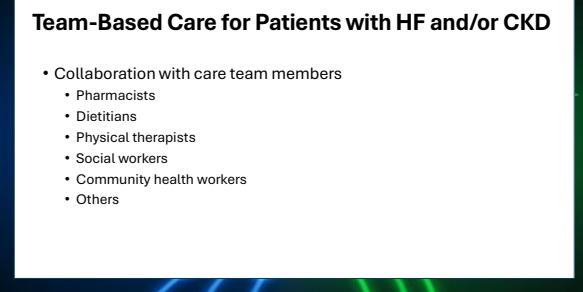
The CONFIDENCE trial – primary outcome

Outcome	Empagliflozin and Finerenone	Empagliflozin Alone	Finerenone Alone
Reduction in UACR from baseline to 180 days	52%	32%	29%
Least-squares mean ratio of the difference in change from baseline (vs combination)	—	0.71; 95% CI, 0.61 to 0.82; P<.001	0.68; 95% CI, 0.59 to 0.79; P<.001

Combination therapy reduced UACR by 29% more than finerenone alone and by 32% more than empagliflozin alone over 180 days of treatment

Agarwal R, et al. *N Engl J Med*. 2023;383(8):533-543.

Overcoming Barriers to Use of Evidence-Based Therapies






Barriers in Primary Care	Potential Solutions
Lack of clinician awareness and knowledge of cardiometabolic conditions	<ul style="list-style-type: none"> Concise and consistent practice guidelines
Complex patient characteristics	<ul style="list-style-type: none"> Actionable and patient-centered recommendations
Lack of clinician time and resources	<ul style="list-style-type: none"> Automated decision support tools integrated into electronic health records
Inadequate collaboration with and access to specialists	<ul style="list-style-type: none"> Improved team-based care
Lack of clear parameters for specialist referral and difficult referral processes	

Nee R, et al. *Nephrol Dial Transplant*. 2023;38(7):132-141.

Case Scenario #1 (continued)

- A patient with newly diagnosed T2D and hypertension presents to the clinic with multiple risk factors for CV, renal, and metabolic diseases, and shows evidence of HF and CKD.

After diagnoses of HF and CKD are established, what treatments might be initiated to reduce cardiorenal risk?

Case Scenario #2

- A patient with a longstanding history of T2D, HF, CKD, and hypertension, a recent HF exacerbation, and declining kidney function presents to the clinic.

- **How do you proceed with involving other members of the health care team to ensure the patient receives holistic care?**

Special Resource Toolkit

Visit the website via the QR code or the URL below for more information on this topic and to review the presentation.

URL: <https://www.pcmg-us.org/toolkit/hfcfd>

